Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 28 » апреля 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

(исциплина: Механика композитов и композитных структур			
	(наименование)		
Форма обучения:	очная		
	(очная/очно-заочная/заочная)		
Уровень высшего образов:	ания: магистратура		
	(бакалавриат/специалитет/магистратура)		
Общая трудоёмкость:	144 (4)		
_	(часы (3Е))		
Направление подготовки:	15.04.03 Прикладная механика		
	(код и наименование направления)		
Направленность: Вы	числительная механика и компьютерный инжиниринг		
	(паименование образовательной программы)		

1. Общие положения

1.1. Цели и задачи дисциплины

Изучение конструкционных и технологических особенностей композиционных материалов и конструкций, способов определения эффективных характеристик, подходов к оценке прочности композиционных материалов

1.2. Изучаемые объекты дисциплины

Основные подходы определения эффективных характеристик и оценки прочности композиционных материалов

1.3. Входные требования

Комплекс базовых знаний, умений и навыков в области механики деформируемого твердого тела

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.1	ИД-1ПК-1.1	Знает основные модели, методы и современные проблемы механики композитов, подходы определения напряженнодеформированного состояния и оценки прочности композиционных конструкций	Знает основные методы и подходы к построению математических моделей различных объектов исследования с использованием научнометодического аппарата механики сплошной среды;	Экзамен
ПК-1.1	ИД-2ПК-1.1	Умеет разрабатывать постановки краевых задач с целью определения параметров механической модели поведения композиционных материалов	Умеет выделять из рассматриваемой проблемы задачу механики, формулировать уравнения математической модели рассматриваемого объекта с использованием научнометодического аппарата механики сплошной среды, принимая необходимые гипотезы, выполнять качественный анализ математической модели;	Контрольная работа

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-1.1	ид-3ПК-1.1	Владеет навыками применения различных механических моделей с целью определения эффективных характеристик композиционных материалов	Владеет навыками построения математических моделей рассматриваемого объекта с использованием научно-методического аппарата механики сплошной среды с учетом необходимых гипотез, а также выполнять качественный анализ математической модели.	Кейс-задача
ПК-1.2	ИД-1ПК-1.2	Знает основные принципы использования численных подходов для определения эффективных механических характеристик композитов	языки, пакеты прикладных программ, средств	Экзамен
ПК-1.2	ид-2ПК-1.2	Умеет проводить численное исследование поведения композиционных материалов и конструкций	Умеет осуществлять численное решение задачи механики с использованием современных эффективных методов и средств, в том числе численных методов, алгоритмических языков, пакетов прикладных программ, средств представления результатов, выполнять качественный анализ результатов расчета;	Кейс-задача
ПК-1.2	ИД-3ПК-1.2	Владеет навыками применения компьютерного моделирования с целью анализа поведения композиционных материалов и конструкций	Владеет навыками численного решения задач механики с использованием современных эффективных методов и средств, а также выполнять качественный анализ результатов расчета.	Кейс-задача

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах			
Вид учесной рассты	часов	Номер семестра			
		3			
1. Проведение учебных занятий (включая проведе-	36	36			
ние текущего контроля успеваемости) в форме:					
1.1. Контактная аудиторная работа, из них:					
- лекции (Л)	9	9			
- лабораторные работы (ЛР)					
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	25	25			
- контроль самостоятельной работы (КСР)	2	2			
- контрольная работа					
1.2. Самостоятельная работа студентов (СРС)	72	72			
2. Промежуточная аттестация					
Экзамен	36	36			
Дифференцированный зачет					
Зачет					
Курсовой проект (КП)					
Курсовая работа (КР)					
Общая трудоемкость дисциплины	144	144			

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием	занятий	ем аудито	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
3-й семест	гр			
Основные соотношения механики композитов	2	0	4	10
Конструкционные и технологические свойства композитов. Основные уравнения механики анизотропных сред.				
Эффективные характеристики композитов.	4	0	16	42
Понятие эффективных физико-механических свойств композитов. Методы определения эффективных упругих характеристик композитов разного типа. Методы статических испытаний композитов.				
Механика конструкций из композиционных материалов	3	0	5	20
Уравнения механики слоистых композитов. Макроизотропные волокнистые среды. Прочность композиционных материалов и конструкций.				
ИТОГО по 3-му семестру	9	0	25	72
ИТОГО по дисциплине	9	0	25	72

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Исследование напряженно-деформированного состояния трубы, изготовленной спиральной намоткой.
2	Определение эффективных упругих характеристик однонаправленно и двунаправленно армированного композиционного материала.
3	Определение эффективных коэффициентов температурного расширения однонаправленно армированного композиционного материала.
4	Определение эффективных упругих характеристик однонаправленно армированного композиционного материала с использованием полидисперсной модели.
5	Численное определение эффективных упругих характеристик однонаправленно армированного композиционного материала.
6	Определение эффективных характеристик макроизотропных волокнистых сред в условиях ПДС.
7	Определение эффективных упругих характеристик многослойного композиционного пакета.

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при которой учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установления связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание	Количество
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в
	год издания, количество страниц)	библиотеке
	1. Основная литература	
1	Баженов С. Л. Механика и технология композиционных материалов :	6
	учебно-справочное руководство / С. Л. Баженов Долгопрудный:	
	Интеллект, 2014.	
2	Кристенсен Р. М. Введение в механику композитов : пер. с англ. / Р.	9
	М. Кристенсен Москва: Мир, 1982.	
3	Шевченко А. А. Физикохимия и механика композиционных	6
	материалов: учебное пособие для вузов / А. А. Шевченко Санкт-	
	Петербург: Профессия, 2010.	
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Вильдеман В. Э. Моделирование процессов деформирования и	50
	разрушения композитов : учебное пособие для вузов : в 3 ч. / В. Э.	
	Вильдеман .— Пермь : Изд-во ПГТУ, 2000.	
2	Носов В. В. Механика композиционных материалов. Лабораторные	3
	работы и практические занятия : учебное пособие / В. В. Носов .— 2-	
	е изд., перераб. и доп. — Санкт-Петербург[и др.]: Лань, 2013. — 240	
	C.	
3	Победря Б. Е. Механика композиционных материалов: учебное	9
	пособие для вузов / Б.Е. Победря Москва: Изд-во МГУ, 1984. —	
	336 c.	
	2.2. Периодические издания	
	Не используется	
	2.3. Нормативно-технические издания	
	Не используется	
	3. Методические указания для студентов по освоению дисципли	ны
	Не используется	
<u> </u>	4. Учебно-методическое обеспечение самостоятельной работы сту	дента
<u> </u>	Не используется	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная		http://e.lanbook.com/book/9	сеть Интернет;
литература		0061	свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
Прикладное программное обеспечение общего назначения	MATLAB 7.9 + Simulink 7.4 Academic, ПНИПУ 2009 г.
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и внедрением	ANSYS (лиц. 444632 ЦВВС)

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Лекция	Лекционная аудитория	1
Практическое	Компьютерный класс	1
занятие		

8. Фонд оценочных средств дисциплины

Описан в отдельном документе

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

(фонд оценочных средств)

для проведения промежуточной аттестации обучающихся по дисциплине «Механика композитов и композитных структур»

Приложение к рабочей программе дисциплины

Направление подготовки: 15.04.03 Прикладная механика

Направленность (профиль) Вычислительная механика и компьютерный

образовательной программы: инжиниринг

Квалификация выпускника: «Магистр»

Выпускающая кафедра: Вычислительная математика, механика и

биомеханика

Форма обучения: Очная

Форма промежуточной

аттестации:

Экзамен

Оценочные материалы (фонд оценочных средств) для проведения промежуточной аттестации обучающихся по дисциплине является частью (приложением) к рабочей программе дисциплины. Для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (3-го семестра учебного плана) и разбито на 2 учебных модуля. В каждом модуле предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируются компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

		В	ид контро	ля	
Контролируемые результаты обучения по дисциплине (ЗУВы)	Текущий	Промежуточный / рубежный		Итоговый	
	TO	ОЛР	КР	К3	Экзамен
Усвоег	ные знания	I			
3.1 (ИД-1 ПК-1.1) знать основные модели, методы и современные проблемы механики композитов, подходы определения напряженно-деформированного состояния и оценки прочности композиционных конструкций;	ТО		KP1		ТВ
3.2 (ИД-1 ПК-1.2) знать основные принципы использования численных подходов для определения эффективных механических характеристик композитов; Освоенные умения	ТО		KP1		ТВ
У.1 (ИД-2 ПК-1.1) уметь разрабатывать постановки краевых задач с целью определения параметров механической модели поведения композиционных материалов;		3П3 1	KP2		ПЗ
У.2 (ИД-2 ПК-1.2) уметь проводить численное исследование поведения композиционных материалов и конструкций		3П3 2-4		КЗ	ПЗ
Приобретенные владения					
В.1 (ИД-3 ПК-1.1) владеть навыками применения различных механических моделей с целью определения эффективных характеристик композиционных		3П3 5,6		КЗ	КЗИ

материалов;				
В.2 (ИД-3 ПК-1.2) владеть навыками			КЗ	КЗИ
применения компьютерного моделирования	зпз	3П3		
с целью анализа поведения		17		
композиционных материалов и		1,7		
конструкций				

TO- теоретический опрос; $3\Pi 3-$ защита практического задания; KP- рубежная контрольная работа; K3- кейс-задача; TB- теоретический вопрос; $\Pi 3-$ практическое задание. K3U- комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и промежуточного и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования компетенций обучаемых, повышение мотивации предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, специалитета И магистратуры ПНИПУ, предусмотрены следующие виды периодичность текущего контроля И успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-

балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Промежуточный и рубежный контроль

Промежуточный и рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ, рубежных контрольных работ (после изучения каждого модуля учебной дисциплины), выполнения и защиты кейс-задачи.

2.2.1. Защита лабораторных работ

Всего запланировано 7 тем практических занятий. Типовые темы практических занятий приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов.

Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины. Первая КР по модулю «Методы определения эффективных упругих характеристик композитов», вторая КР – по модулю «Механика конструкций из композиционных материалов».

Типовые задания первой КР:

- 1. Плоскость упругой симметрии. Основные виды анизотропии.
- 2. Запись закона Гука с использованием технических констант.
- 3. Определить продольный модуль Юнга для однонаправленно-армированного композиционного материала.

Типовые задания второй КР:

- 1. Определение эффективных характеристик анизотропной слоистой оболочки.
- 2. Нитяная модель поведения волокнистого композита.
- 3. Разработать набор экспериментов для определения параметров тензорного полиномиального критерия разрушения трансверсально-изотропного материала для случая ПНС.

Типовые шкала и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.2.3. Выполнение и защита кейс-задачи

Для оценивания навыков и опыта деятельности (владения), как результата обучения по дисциплине, не имеющей курсового проекта или работы, используется кейс-задача (пример кейс-задачи, шкала и критерии оценивания приведены в приложении 1).

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего, промежуточного и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего, промежуточного и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для

проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Процедура промежуточной аттестации с проведением аттестационного испытания

В отдельных случаях (например, в случае переаттестации дисциплины) промежуточная аттестация в виде зачета по дисциплине может проводиться с проведением аттестационного испытания по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций.

2.3.2.1. Типовые вопросы и задания для экзамена по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Основные уравнения теории упругости анизотропных сред. Плоскость упругой симметрии. Основные случаи анизотропии.
 - 2. Методы статических испытаний композитов.
- 3. Численное определение эффективных упругих свойств однонаправленно-армированного композиционного материала.
- 4. Определение эффективных упругих характеристик многослойного композиционного материала. Постановки краевых задач и реализация средствами САЕ систем.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Определить продольный модуль однонаправленно-армированного композиционного материала.
- 2. Определить эффективные упругие характеристики многослойного композиционного пакета, состоящего из трех слоев одинаковой толщины, армированных под углами 45, 0, -45 градусов соответственно. Характеристики слоев считать известными. Решение получить путем анализа трехмерной модели в Ansys.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Определить эффективную схему армирования сферического композиционного баллона давления, используя нитяную модель.
- 2. Разработать систему натурных экспериментов для определения параметров тензорного полиномиального критерия оценки прочности для двунаправленно-армированного композиционного пакета.
- 3. Смоделировать задачу определения эффективных коэффициентов температурного расширения двуслойного перекрестно-армированного

композиционного пакета средствами Ansys. Графически представить зависимость определяемых величин от угла армирования.

Перечень типовых ситуационных заданий и кейсов для проверки умений и владений представлен в приложении 1. Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 5-ти балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего, промежуточного и рубежного контроля в виде интегральной оценки по 5-ти балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовая кейс-задача для проверки владений

Предложенная ситуация: Рассматривается осесимметричная многослойная конструкция, изготовленная намоткой. Известны характеристики компонент, использованных при формировании слоев. Требуется предложить схемы армирования материалов изделия, обеспечивающие низкие уровни опасных напряжений.

Задание:

- 1. Предложить подходы для определения эффективных механических характеристик рассматриваемых композиционных материалов. Для обоснования использовать справочную литературу по механике композитов, электронные ресурсы, рекомендованные в рабочей программе дисциплины.
- 2. Разработать реализации алгоритмов определения эффективных механических характеристик материалов рассматриваемой конструкции.
- 3. Разработать алгоритм численного решения задачи по определению НДС конструкции средствами современных CAE-систем (Ansys, SolidWorks), либо средствами компьютерной математики (Matlab) с учетом выбранной механической модели и предложенного подхода к решению задачи.
- 4. Предложить и практически реализовать алгоритм поиска оптимальной схемы армирования.

Критерии оценки выполнения кейс-задачи

Оценка «**пять**» **ставится**, если обучающийся осознанно излагает и оценивает суть данной ситуации, с аргументацией своей точки зрения, умеет анализировать, обобщать и предлагает верные пути решения складывающейся ситуации.

Оценка «четыре» ставится, если обучающийся понимает суть ситуации, логично обосновывает выбор модели механического поведения и подхода к решению задачи, но допускает незначительные неточности при определении путей решения.

Оценка «три» ставится, если обучающийся ориентируется в сущности складывающейся ситуации, но нуждается в наводящих вопросах, не умеет анализировать и не совсем верно намечает пути решения ситуации.

Оценка «два» ставится, если обучающийся не ориентируется и не понимает суть данной ситуации, не может предложить путей ее решения, либо допускает грубые ошибки.